

ENCOURAGING GREEN INFRASTRUCTURE TO MITIGATE TRANSPORTATION IMPACTS

BARBARA WYSE, HIGHLAND ECONOMICS

IN PARTNERSHIP WITH THE NORTH CENTRAL TEXAS COUNCIL OF GOVERNMENTS

North Central Texas Council of Governments

THE SETTING: NORTH CENTRAL TEXAS

North Central Texas

Council of Governments

- Dallas-Fort Worth Metropolitan Area
- BIG Growth: 7.2 million people

- PROBLEM: Few requirements to mitigate environmental impacts of transportation projects, and mitigation viewed primarily as a cost by local governments
- APPROACH: This project, sponsored by North Central Texas Council of Governments, which provides:
 - Regional transportation planning
 - Technical assistance for local governments

ABOUT THE PROJECT

 Goal: Demonstrate benefits of mitigation (and costs of not mitigating)

Audience: local transportation planners and policy makers

2 Steps: Data Collection & Web-Interface Decision Tool

Example Mitigation Measures

- Bioswales/Detention Basins/Wetlands
- Pervious Pavement
- Trees
- Riparian Planting
- Wildlife Corridors
- Streamflow regulation
- Noise/Light Mitigation

CHALLENGES & APPROACHES

• How to focus the analysis? (Started with 20+ services and 20+ mitigation measures)

Approach: Interviews with local stakeholders to identify key services/mitigation measures, identify final ecosystem services people value and general 'types' of mitigation.

 How to quantify values given relative limited data on urban ecosystem services and transportation mitigation measures?

Approach: Focus on the financial values that mattered to local officials, heavily rely on local information, qualitative assessment of some measures/services, and work with ranges to reflect uncertainty

How to make model values applicable to all of the diverse environments in region?

Approach: Identify key, easy to answer project and site biophysical variables for user entry (e.g., acreage of impervious area, type of habitat converted, whether recreation is affected, etc.)

3 TYPES OF MODEL DATA DEVELOPED

 Environmental Costs Per Acre of Impervious Area/Habitat Conversion with No Mitigation

 Environmental Benefit per Acre of Mitigation (e.g., reduced pounds of nitrogen in runoff, reduced pounds of NOx in air, etc.)

Annual Economic Benefits per Acre of Mitigation (\$/lb of nitrogen, \$/lb of NOx, etc.)

FINDING HIGHLIGHTS

- We know a lot about trees, and they have high economic and social returns.
- We know some about stormwater management benefits for other mitigation measures, but not much else.
- BC > 1 clearly for street trees/preservation of tree canopy, pervious pavement, and likely for detention ponds, riparian planting, and wetlands.
- Raingardens/bioretention ponds may have low quantified benefits relative to costs.
- Limited data, so qualitative assessment of noise mitigation, light mitigation, wildlife mitigation, and streamflow regulation.

Photo Source: EPA Green infrastructure website

DRAFT TOOL – INPUT PROJECT DATA

COMMUNICATE RESULTS – ENVIRONMENTAL COSTS IF NO MITIGATION

3. Environ	mental Cost			+
These numb affecting th environmer	pers represent the environmental cos is cost. All environmental costs are no atal costs.	st of one acre of transportation project if no stewards ot represented here, only those that could be quantif	ship efforts are implemented. The transportation project m ied for the North Central Texas region. Therefore, the transp	ay be larger or smaller than one acre, portation project may have additional
*	HEAT ISLAND EFFECT Click to Learn More 🗙	WATER QUALITY IMPACT Click to Learn More X	AQUATIC HABITAT	Click to Learn More X
	VEGETATION REMOVAL	VEHICLE COLLISIONS		

DRAFT TOOL – SELECT MITIGATION MEASURE

4. Stewardship Options

Stewardship options that match your project's size and location. Select an option to view details below.

COMMUNICATE RESULTS – BENEFITS OF MITIGATION

THANK YOU!

CONTACT INFORMATION: BARBARA WYSE HIGHLAND ECONOMICS BARBARA.WYSE@HIGHLANDECONOMICS.COM 503-954-1741

TRANSPORTATION PROJECT

Avoidance measure reduces impact

Mitigation measure reduces environmental impact

Table 1-1: Quantified Costs: Tool Inputs on Environmental Costs of Transportation

Type of Environmental Impact	Quantity	Unit
Stormwater, Runoff ¹	929,381	Annual Gallons of Runoff / Acre of Impervious Area / Year
Water Quality ²		
Sediment	900 - 1,342	Annual Pounds in Runoff / Acre of Impervious Area / Year
Nitrogen	8.8 - 16.5	Annual Pounds in Runoff / Acre of Impervious Area / Year
Phosphorus	1.0 - 2.2	Annual Pounds in Runoff / Acre of Impervious Area / Year
Recreation ³	696 - 3,000	Visits Per Recreation Area Acre Converted / Year
Urban Heat Island ⁴	4,987	Energy Use / Acre of Tree Canopy Removed / Year
Habitat		
Wetland/Riparian	1	Acres Reduced Habitat / Acres Habitat Converted
Terrestrial Habitat	1	Acres Reduced Habitat / Acres Habitat Converted
Air Quality 5		
Particulate Matter	12.5 - 50.9	Annual Pounds / Acre of Tree Canopy Removed / Year
Nitrogen Dioxide	4.5 - 12.5	Annual Pounds / Acre of Tree Canopy Removed / Year
Sulfur Dioxide	1.8 - 6.2	Annual Pounds / Acre of Tree Canopy Removed / Year

Table 1-2: Quantified Benefits: Tool Inputs on Environmental Benefit

Environmental Benefit	Mitigation Measure	Benefit	Unit
Water Quantity 1 (Stormwater Capture)	Bioretention	6.6 - 18.6	Annual Million Gallons Retained / Acre / Year
	Detention Ponds	7.2 - 38.4	Annual Million Gallons Retained / Acre / Year
	Wetlands	10.0 - 50.2	Annual Million Gallons Retained / Acre / Year
	Natural Areas	6.6 - 50.2	Annual Million Gallons Retained / Acre / Year
	Pervious Pavement	0.66 - 0.93	Annual Million Gallons Retained / Acre / Year
Water Quality ²	Bioretention	2 - 13	Annual Tons Retained / Acre / Year
(Sediment Capture)	Detention Ponds	1 - 35	Annual Tons Retained / Acre / Year
	Wetlands	7 - 54	Annual Tons Retained / Acre/ Year
	Natural Areas	2 - 54	Annual Tons Retained / Acre/ Year
	Pervious Pavement	0.58 - 0.64	Annual Tons Retained / Acre/ Year
Water Quality ²	Bioretention	31 - 314	Annual Pounds Retained / Acre/ Year
(Nitrogen Capture)	Detention Ponds	27 - 1,003	Annual Pounds Retained / Acre/ Year
	Wetlands	16 - 760	Annual Pounds Retained / Acre/ Year
	Natural Areas	16 - 760	Annual Pounds Retained / Acre/ Year
	Pervious Pavement	4 - 11	Annual Pounds Retained / Acre/ Year
Water Quality ²	Bioretention	4 - 41	Annual Pounds Retained / Acre/ Year
(Phosphorus Capture)	Detention Ponds	0 - 72	Annual Pounds Retained / Acre/ Year
	Wetlands	87 - 139	Annual Pounds Retained / Acre/ Year
	Natural Areas	4 - 139	Annual Pounds Retained / Acre/ Year
	Pervious Pavement	0.5 - 1.0	Annual Pounds Retained / Acre/ Year
Recreation ³	Context Sensitive Detention Ponds	696 - 3,000	Annual Visits Per Recreation Area Acre / Year
	Wetlands	696 - 3,000	Annual Visits Per Recreation Area Acre / Year
	Parks	696 - 3,000	Annual Visits Per Recreation Area Acre / Year
Energy Use 4	Tree	60.8	Annual KWh savings / Tree / Year
Air Quality (Particulate Matter) ⁵	Trees	0.15 - 0.62	Annual Pounds Retained / Tree / Year
Air Quality (Sulfur Dioxide) 5	Trees	0.05 - 0.15	Annual Pounds Retained / Tree / Year
Air Quality (Nitrogen Dioxide) ⁵	Trees	0.02 - 0.08	Annual Pounds Retained / Tree / Year

Table 1-3: Quantified Benefits: Tool Inputs on Economic Benefit

Environmental Benefit	Economic Value	Unit
Stormwater, Management ¹	\$1,000 - \$1,100	\$ / Acre impervious / Year
Water Quality (Nitrogen) 2	\$1 - \$10	\$ / Pound
Water Quality (Phosphorus) ²	\$1 - \$10	\$ / Pound
Water Quality (TSS) 2	\$6	\$ / Ton
Recreation ^a	\$3 - \$25	Per Visit Benefit to Becreator
Energy Savings ⁴	\$0.1165	\$ / kWh
Aesthetics	\$300 - \$900	\$ / Street Tree / Year
Air Quality (PM10) 5	\$7.36 - \$19.85	\$ / Pound
Air Quality (NO ₂) ⁵	\$4.59 - \$11.54	\$ / Pound
Air Quality (SO ₂) ⁵	\$3.67 - \$18.40	\$ / Pound
Habitat, Terrestrial	\$100 - \$750	\$ / Acre / Year
Habitat, Wetland/Riparian	\$500 - \$11,400	\$ / Acre / Year
Pavement Maintenance Costs	\$3.50 - \$17	\$ / Tree / Year

All shares in the second state discovery of the second state and the state of the state of the second state of

Table ES-1: Annual Economic and Social Benefits Per Acre of Mitigation Type

\$ = Small Benefit, \$\$=Moderate Benefit, \$\$\$High Benefit

		Benefits									
Mitigation Measure	Total Annualized Costs	Habitat Value	Avoided Flooding	Stormwater Benefit	Air Quality Health Benefit	Recreation Benefit	Energy Savings (Urban Heat Island)	Aesthetic Benefits	Other Health and Social Benefits	Reduced Road Maintenance Cost	Total Annual Quantified Benefits ¹
Tree Planting (per tree, not per acre)	\$36 - \$57	\$\$	\$\$	\$\$	\$1.50 - \$15.50	sn.	\$7	\$300 - \$900	\$\$	\$350 - \$17	\$300 - \$950+
Tree Canopy	Not Available	\$\$	\$\$\$	\$1,020 - \$12,840	\$120 - \$1,270	\$2,100 - \$75,000	\$\$\$	\$\$\$	\$\$\$	\$\$	\$3,240 - \$89,010+
Detention Ponds	\$15,600 - \$48,400	\$500 - \$11,400	\$\$\$	\$1,030 - \$12,060	\$\$	\$2,100 - \$75,000	\$\$	\$\$	\$\$	Not Applicable	\$3,600 - \$98,500+
Wetlands / Riparian Planting	\$2,500 - \$46,800	\$500 - \$11,400	\$\$\$	\$1,150 - \$10,410	ss	\$2,100 - \$75,000	\$\$	\$\$	\$\$	Not Applicable	\$3,700 - \$96,800+
Natural Areas / Open Space Preservation	Not Available	\$100 - \$750	\$\$\$	\$1,020 - \$12,840	\$	\$2,100 - \$75,000	\$\$\$	\$\$\$	\$\$\$	47	\$3,200- \$88,600 +
Pervious Pavement	\$0 (likely no additional cost over traditional)	Not Applicable	¢,	\$1,010 - \$1,220	Not Applicable	N/A	s	Not Applicable	Not Applicable	55	\$1,000 - \$1,200+
Bioreteption – Raingardens and Bioswales	\$88,500 - \$132,500	4A	U\$	\$1,050 - \$4,730	\$	101	Ś	474	ŝ	\$	\$1,000 - \$4,700 +
Noise Mitigation	Not Available	ŝ	N/A	N/A	Not Applicable	ŝ	\$\$ (if trees used)	\$\$	\$	Not Applicable	\$\$
Light Mitigation	Not Available	\$	N/A	N/A	Not Applicable	ŝ	Not Applicable	\$\$	\$	Not Applicable	\$
Wildlife Mitigation	Not Available	\$\$	N/A	\$	ş	\$	\$	\$	\$	\$	\$\$
Non- Vegetative Stream Flow Regulation	Not Available	\$\$	Ş	Ś	Not Applicable	474	Not Applicable	107	N/A	Not Applicable	\$\$

